Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 31(2): 333-344, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34719824

RESUMO

The molecular mechanisms that drive the infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-the causative agent of coronavirus disease 2019 (COVID-19)-are under intense current scrutiny to understand how the virus operates and to uncover ways in which the disease can be prevented or alleviated. Recent proteomic screens of the interactions between viral and host proteins have identified the human proteins targeted by SARS-CoV-2. The DNA polymerase α (Pol α)-primase complex or primosome-responsible for initiating DNA synthesis during genomic duplication-was identified as a target of nonstructural protein 1 (nsp1), a major virulence factor in the SARS-CoV-2 infection. Here, we validate the published reports of the interaction of nsp1 with the primosome by demonstrating direct binding with purified recombinant components and providing a biochemical characterization of their interaction. Furthermore, we provide a structural basis for the interaction by elucidating the cryo-electron microscopy structure of nsp1 bound to the primosome. Our findings provide biochemical evidence for the reported targeting of Pol α by the virulence factor nsp1 and suggest that SARS-CoV-2 interferes with Pol α's putative role in the immune response during the viral infection.


Assuntos
COVID-19 , SARS-CoV-2 , Proteínas não Estruturais Virais , Microscopia Crioeletrônica , DNA Polimerase I , DNA Primase , Humanos , Proteômica , Proteínas não Estruturais Virais/genética , Fatores de Virulência
2.
EMBO J ; 39(18): e104185, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32705708

RESUMO

Regions of the genome with the potential to form secondary DNA structures pose a frequent and significant impediment to DNA replication and must be actively managed in order to preserve genetic and epigenetic integrity. How the replisome detects and responds to secondary structures is poorly understood. Here, we show that a core component of the fork protection complex in the eukaryotic replisome, Timeless, harbours in its C-terminal region a previously unappreciated DNA-binding domain that exhibits specific binding to G-quadruplex (G4) DNA structures. We show that this domain contributes to maintaining processive replication through G4-forming sequences, and exhibits partial redundancy with an adjacent PARP-binding domain. Further, this function of Timeless requires interaction with and activity of the helicase DDX11. Loss of both Timeless and DDX11 causes epigenetic instability at G4-forming sequences and DNA damage. Our findings indicate that Timeless contributes to the ability of the replisome to sense replication-hindering G4 formation and ensures the prompt resolution of these structures by DDX11 to maintain processive DNA synthesis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , RNA Helicases DEAD-box/metabolismo , Dano ao DNA , DNA Helicases/metabolismo , Replicação do DNA , Quadruplex G , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular , RNA Helicases DEAD-box/genética , DNA Helicases/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Domínios Proteicos
3.
EMBO J ; 37(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30104407

RESUMO

The eukaryotic replisome disassembles parental chromatin at DNA replication forks, but then plays a poorly understood role in the re-deposition of the displaced histone complexes onto nascent DNA. Here, we show that yeast DNA polymerase α contains a histone-binding motif that is conserved in human Pol α and is specific for histones H2A and H2B. Mutation of this motif in budding yeast cells does not affect DNA synthesis, but instead abrogates gene silencing at telomeres and mating-type loci. Similar phenotypes are produced not only by mutations that displace Pol α from the replisome, but also by mutation of the previously identified histone-binding motif in the CMG helicase subunit Mcm2, the human orthologue of which was shown to bind to histones H3 and H4. We show that chromatin-derived histone complexes can be bound simultaneously by Mcm2, Pol α and the histone chaperone FACT that is also a replisome component. These findings indicate that replisome assembly unites multiple histone-binding activities, which jointly process parental histones to help preserve silent chromatin during the process of chromosome duplication.


Assuntos
Cromatina/metabolismo , DNA Polimerase I/metabolismo , Histonas/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromatina/genética , DNA Polimerase I/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
4.
Nat Commun ; 5: 5506, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25420454

RESUMO

The HerA ATPase cooperates with the NurA nuclease and the Mre11-Rad50 complex for the repair of double-strand DNA breaks in thermophilic archaea. Here we extend our structural knowledge of this minimal end-resection apparatus by presenting the first crystal structure of hexameric HerA. The full-length structure visualizes at atomic resolution the N-terminal HerA-ATP synthase domain and a conserved C-terminal extension, which acts as a physical brace between adjacent protomers. The brace also interacts in trans with nucleotide-binding residues of the neighbouring subunit. Our observations support a model in which the coaxial interaction of the HerA ring with the toroidal NurA dimer generates a continuous channel traversing the complex. HerA-driven translocation would propel the DNA towards the narrow annulus of NurA, leading to duplex melting and nucleolytic digestion. This system differs substantially from the bacterial end-resection paradigms. Our findings suggest a novel mode of DNA-end processing by this integrated archaeal helicase-nuclease machine.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Archaea/enzimologia , Proteínas Arqueais/metabolismo , DNA Arqueal/genética , Translocação Genética , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Archaea/química , Archaea/genética , Proteínas Arqueais/química , Proteínas Arqueais/genética , Quebras de DNA de Cadeia Dupla , DNA Arqueal/metabolismo , Desoxirribonucleases/genética , Desoxirribonucleases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência
5.
Elife ; 2: e00482, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23599895

RESUMO

The DNA Polymerase α (Pol α)/primase complex initiates DNA synthesis in eukaryotic replication. In the complex, Pol α and primase cooperate in the production of RNA-DNA oligonucleotides that prime synthesis of new DNA. Here we report crystal structures of the catalytic core of yeast Pol α in unliganded form, bound to an RNA primer/DNA template and extending an RNA primer with deoxynucleotides. We combine the structural analysis with biochemical and computational data to demonstrate that Pol α specifically recognizes the A-form RNA/DNA helix and that the ensuing synthesis of B-form DNA terminates primer synthesis. The spontaneous release of the completed RNA-DNA primer by the Pol α/primase complex simplifies current models of primer transfer to leading- and lagging strand polymerases. The proposed mechanism of nucleotide polymerization by Pol α might contribute to genomic stability by limiting the amount of inaccurate DNA to be corrected at the start of each Okazaki fragment. DOI:http://dx.doi.org/10.7554/eLife.00482.001.


Assuntos
DNA Polimerase I/metabolismo , DNA Fúngico/biossíntese , Saccharomyces cerevisiae/genética , Domínio Catalítico , DNA Fúngico/química , Modelos Moleculares , Conformação de Ácido Nucleico , Saccharomyces cerevisiae/enzimologia
6.
Biochem Soc Trans ; 41(1): 314-20, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23356304

RESUMO

During DNA repair by HR (homologous recombination), the ends of a DNA DSB (double-strand break) must be resected to generate single-stranded tails, which are required for strand invasion and exchange with homologous chromosomes. This 5'-3' end-resection of the DNA duplex is an essential process, conserved across all three domains of life: the bacteria, eukaryota and archaea. In the present review, we examine the numerous and redundant helicase and nuclease systems that function as the enzymatic analogues for this crucial process in the three major phylogenetic divisions.


Assuntos
Dano ao DNA , DNA Arqueal/genética , DNA Bacteriano/genética , DNA/genética , Células Eucarióticas/metabolismo , Filogenia
7.
Open Biol ; 2(7): 120099, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22870393

RESUMO

The successful completion of meiosis is essential for all sexually reproducing organisms. The synaptonemal complex (SC) is a large proteinaceous structure that holds together homologous chromosomes during meiosis, providing the structural framework for meiotic recombination and crossover formation. Errors in SC formation are associated with infertility, recurrent miscarriage and aneuploidy. The current lack of molecular information about the dynamic process of SC assembly severely restricts our understanding of its function in meiosis. Here, we provide the first biochemical and structural analysis of an SC protein component and propose a structural basis for its function in SC assembly. We show that human SC proteins SYCE2 and TEX12 form a highly stable, constitutive complex, and define the regions responsible for their homotypic and heterotypic interactions. Biophysical analysis reveals that the SYCE2-TEX12 complex is an equimolar hetero-octamer, formed from the association of an SYCE2 tetramer and two TEX12 dimers. Electron microscopy shows that biochemically reconstituted SYCE2-TEX12 complexes assemble spontaneously into filamentous structures that resemble the known physical features of the SC central element (CE). Our findings can be combined with existing biological data in a model of chromosome synapsis driven by growth of SYCE2-TEX12 higher-order structures within the CE of the SC.


Assuntos
Proteínas Cromossômicas não Histona/química , Modelos Biológicos , Complexos Multiproteicos/química , Multimerização Proteica , Complexo Sinaptonêmico/química , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Humanos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Estrutura Quaternária de Proteína , Relação Estrutura-Atividade , Complexo Sinaptonêmico/genética , Complexo Sinaptonêmico/metabolismo
8.
Nucleic Acids Res ; 40(7): 3183-96, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22135300

RESUMO

Helicase-nuclease systems dedicated to DNA end resection in preparation for homologous recombination (HR) are present in all kingdoms of life. In thermophilic archaea, the HerA helicase and NurA nuclease cooperate with the highly conserved Mre11 and Rad50 proteins during HR-dependent DNA repair. Here we show that HerA and NurA must interact in a complex with specific subunit stoichiometry to process DNA ends efficiently. We determine crystallographically that NurA folds in a toroidal dimer of intertwined RNaseH-like domains. The central channel of the NurA dimer is too narrow for double-stranded DNA but appears well suited to accommodate one or two strands of an unwound duplex. We map a critical interface of the complex to an exposed hydrophobic epitope of NurA abutting the active site. Based upon the presented evidence, we propose alternative mechanisms of DNA end processing by the HerA-NurA complex.


Assuntos
Proteínas Arqueais/química , DNA Helicases/química , Desoxirribonucleases/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/metabolismo , Sequência Conservada , Cristalografia por Raios X , DNA/metabolismo , DNA Helicases/metabolismo , Desoxirribonucleases/metabolismo , Dimerização , Modelos Moleculares , Dados de Sequência Molecular , Dobramento de Proteína , Estrutura Terciária de Proteína , Ribonuclease H/química , Sulfolobus solfataricus/enzimologia
9.
PLoS One ; 5(4): e10083, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20404922

RESUMO

BACKGROUND: DNA synthesis during replication relies on RNA primers synthesised by the primase, a specialised DNA-dependent RNA polymerase that can initiate nucleic acid synthesis de novo. In archaeal and eukaryotic organisms, the primase is a heterodimeric enzyme resulting from the constitutive association of a small (PriS) and large (PriL) subunit. The ability of the primase to initiate synthesis of an RNA primer depends on a conserved Fe-S domain at the C-terminus of PriL (PriL-CTD). However, the critical role of the PriL-CTD in the catalytic mechanism of initiation is not understood. METHODOLOGY/PRINCIPAL FINDINGS: Here we report the crystal structure of the yeast PriL-CTD at 1.55 A resolution. The structure reveals that the PriL-CTD folds in two largely independent alpha-helical domains joined at their interface by a [4Fe-4S] cluster. The larger N-terminal domain represents the most conserved portion of the PriL-CTD, whereas the smaller C-terminal domain is largely absent in archaeal PriL. Unexpectedly, the N-terminal domain reveals a striking structural similarity with the active site region of the DNA photolyase/cryptochrome family of flavoproteins. The region of similarity includes PriL-CTD residues that are known to be essential for initiation of RNA primer synthesis by the primase. CONCLUSION/SIGNIFICANCE: Our study reports the first crystallographic model of the conserved Fe-S domain of the archaeal/eukaryotic primase. The structural comparison with a cryptochrome protein bound to flavin adenine dinucleotide and single-stranded DNA provides important insight into the mechanism of RNA primer synthesis by the primase.


Assuntos
DNA Primase/química , Desoxirribodipirimidina Fotoliase/química , Proteínas de Saccharomyces cerevisiae/química , Domínio Catalítico , Cristalografia por Raios X , Proteínas Ferro-Enxofre/química , Dobramento de Proteína , Subunidades Proteicas , RNA/biossíntese
10.
DNA Repair (Amst) ; 8(12): 1380-9, 2009 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-19837014

RESUMO

The DNA ligase IV-Xrcc4 complex is responsible for the ligation of broken DNA ends in the non-homologous end-joining (NHEJ) pathway of DNA double strand break repair in mammals. Mutations in DNA ligase IV (Lig4) lead to immunodeficiency and radiosensitivity in humans. Only partial structural information for Lig4 and Xrcc4 is available, while the structure of the full-length proteins and their arrangement within the Lig4-Xrcc4 complex is unknown. The C-terminal domain of Xrcc4, whose structure has not been solved, contains phosphorylation sites for DNA-PKcs and is phylogenetically conserved, indicative of a regulatory role in NHEJ. Here, we have purified full length Xrcc4 and the Lig4-Xrcc4 complex, and analysed their structure by single-particle electron microscopy. The three-dimensional structure of Xrcc4 at a resolution of approximately 37A reveals that the C-terminus of Xrcc4 forms a dimeric globular domain connected to the N-terminus by a coiled-coil. The N- and C-terminal domains of Xrcc4 locate at opposite ends of an elongated molecule. The electron microscopy images of the Lig4-Xrcc4 complex were examined by two-dimensional image processing and a double-labelling strategy, identifying the site of the C-terminus of Xrcc4 and the catalytic core of Lig4 within the complex. The catalytic domains of Lig4 were found to be in the vicinity of the N-terminus of Xrcc4. We provide a first sight of the structural organization of the Lig4-Xrcc4 complex, which suggests that the BRCT domains could provide the link of the ligase to Xrcc4 while permitting some movements of the catalytic domains of Lig4. This arrangement may facilitate the ligation of diverse configurations of damaged DNA.


Assuntos
DNA Ligases/metabolismo , DNA Ligases/ultraestrutura , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , DNA/metabolismo , DNA Ligase Dependente de ATP , DNA Ligases/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Microscopia Eletrônica , Modelos Moleculares , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
11.
EMBO J ; 27(16): 2259-69, 2008 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-18650935

RESUMO

The RecA/RAD51 nucleoprotein filament is central to the reaction of homologous recombination (HR). Filament activity must be tightly regulated in vivo as unrestrained HR can cause genomic instability. Our mechanistic understanding of HR is restricted by lack of structural information about the regulatory proteins that control filament activity. Here, we describe a structural and functional analysis of the HR inhibitor protein RecX and its mode of interaction with the RecA filament. RecX is a modular protein assembled of repeated three-helix motifs. The relative arrangement of the repeats generates an elongated and curved shape that is well suited for binding within the helical groove of the RecA filament. Structure-based mutagenesis confirms that conserved basic residues on the concave side of RecX are important for repression of RecA activity. Analysis of RecA filament dynamics in the presence of RecX shows that RecX actively promotes filament disassembly. Collectively, our data support a model in which RecX binding to the helical groove of the filament causes local dissociation of RecA protomers, leading to filament destabilisation and HR inhibition.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Recombinação Genética , Sequência de Aminoácidos , Análise Mutacional de DNA , Modelos Moleculares , Dados de Sequência Molecular , Nucleoproteínas/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Recombinases Rec A/metabolismo , Propriedades de Superfície
12.
Nat Struct Mol Biol ; 14(9): 875-7, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17704817

RESUMO

Primases synthesize the RNA primers that are necessary for replication of the parental DNA strands. Here we report that the heterodimeric archaeal/eukaryotic primase is an iron-sulfur (Fe-S) protein. Binding of the Fe-S cluster is mediated by an evolutionarily conserved domain at the C terminus of the large subunit. We further show that the Fe-S domain is essential to the unique ability of the eukaryotic primase to start DNA replication.


Assuntos
DNA Primase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , RNA , DNA Primase/química , Espectroscopia de Ressonância de Spin Eletrônica , Ligação Proteica
13.
Structure ; 13(2): 243-55, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15698568

RESUMO

DNA-PKcs is a large PI3-kinase-related protein kinase (PIKK) that plays a central role in DNA double-strand break (DSB) repair via nonhomologous end joining. Using cryo-electron microscopy we have now generated an approximately 13 A three-dimensional map of DNA-PKcs, revealing the overall architecture and topology of the 4128 residue polypeptide chain and allowing location of domains. The highly conserved C-terminal PIKK catalytic domain forms a central structure from which FAT and FATC domains protrude. Conformational changes observed in these domains on DNA binding suggest that they transduce DNA-induced conformational changes to the catalytic core and regulate kinase activity. The N-terminal segments form long curved tubular-shaped domains based on helical repeats to create interacting surfaces required for macromolecular assembly. Comparison of DNA-PKcs with another PIKK DNA repair factor, ATM, defines a common architecture for this important protein family.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas Serina-Treonina Quinases/química , Proteínas Mutadas de Ataxia Telangiectasia , Domínio Catalítico , Proteínas de Ciclo Celular/química , Microscopia Crioeletrônica , DNA/metabolismo , Proteína Quinase Ativada por DNA , Ativação Enzimática , Humanos , Conformação Molecular , Proteínas Nucleares , Fosfatidilinositol 3-Quinases/química , Estrutura Terciária de Proteína , Proteínas Supressoras de Tumor/química
14.
J Mol Biol ; 335(2): 573-82, 2004 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-14672664

RESUMO

In eukaryotes the non-homologous end-joining repair of double strand breaks in DNA is executed by a series of proteins that bring about the synapsis, preparation and ligation of the broken DNA ends. The mechanism of this process appears to be initiated by the obligate heterodimer (Ku70/Ku86) protein complex Ku that has affinity for DNA ends. Ku then recruits the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). The three-dimensional structures of the major part of the Ku heterodimer, representing the DNA-binding core, both free and bound to DNA are known from X-ray crystallography. However, these structures lack a region of ca 190 residues from the C-terminal region (CTR) of the Ku86 subunit (also known as Lupus Ku autoantigen p86, Ku80, or XRCC5) that includes the extreme C-terminal tail that is reported to be sufficient for DNA-PKcs-binding. We have examined the structural characteristics of the Ku86CTR protein expressed in bacteria. By deletion mutagenesis and heteronuclear NMR spectroscopy we localised a globular domain consisting of residues 592-709. Constructs comprising additional residues either to the N-terminal side (residues 543-709), or the C-terminal side (residues 592-732), which includes the putative DNA-PKcs-binding motif, yielded NMR spectra consistent with these extra regions lacking ordered structure. The three-dimensional solution structure of the core globular domain of the C-terminal region of Ku86 (Ku86CTR(592-709)) has been determined using heteronuclear NMR spectroscopy and dynamical simulated annealing using structural restraints from nuclear Overhauser effect spectroscopy, and scalar and residual dipolar couplings. The polypeptide fold comprises six regions of alpha-helical secondary structure that has an overall superhelical topology remotely homologous to the MIF4G homology domain of the human nuclear cap binding protein 80 kDa subunit and the VHS domain of the Drosophila protein Hrs, though strict analysis of the structures suggests that these domains are not functionally related. Two prominent hydrophobic pockets in the gap between helices alpha2 and alpha4 suggest a potential ligand-binding characteristic for this globular domain.


Assuntos
Antígenos Nucleares/química , DNA Helicases , Proteínas de Ligação a DNA/química , Sequência de Aminoácidos , Antígenos Nucleares/metabolismo , Sítios de Ligação , DNA/metabolismo , Proteína Quinase Ativada por DNA , Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte , Escherichia coli/química , Escherichia coli/metabolismo , Autoantígeno Ku , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Complexo Proteico Nuclear de Ligação ao Cap/química , Complexo Proteico Nuclear de Ligação ao Cap/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Soluções
15.
EMBO J ; 22(21): 5875-82, 2003 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-14592984

RESUMO

The catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) is essential for the repair of double-stranded DNA breaks (DSBs) in non- homologous end joining (NHEJ) and during V(D)J recombination. DNA-PKcs binds single- and double-stranded DNA in vitro, and in vivo the Ku heterodimer probably helps recruit it to DSBs with high affinity. Once loaded onto DNA, DNA-PKcs acts as a scaffold for other repair factors to generate a multiprotein complex that brings the two DNA ends together. Human DNA-PKcs has been analysed by electron microscopy in the absence and presence of double-stranded DNA, and the three-dimensional reconstruction of DNA-bound DNA-PKcs displays large conformational changes when compared with the unbound protein. DNA-PKcs seems to use a palm-like domain to clip onto the DNA, and this new conformation correlates with the activation of the kinase. We suggest that the observed domain movements might help the binding and maintenance of DNA-PKcs' interaction with DNA at the sites of damage, and that these conformational changes activate the kinase.


Assuntos
Reparo do DNA/fisiologia , Proteínas de Ligação a DNA , DNA/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Sequência de Bases , Proteínas de Ciclo Celular , DNA/genética , Dano ao DNA , Proteína Quinase Ativada por DNA , Ativação Enzimática , Células HeLa , Humanos , Técnicas In Vitro , Microscopia Eletrônica , Modelos Biológicos , Modelos Moleculares , Proteínas Nucleares , Conformação Proteica , Proteínas Serina-Treonina Quinases/ultraestrutura , Subunidades Proteicas , Proteínas Supressoras de Tumor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...